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Fig. 1: We designed multiple experiments in Virtual and Augmented Reality to collect head-eye coordination data for sequences of gaze
motion (a). We are the first to model head-eye coordination behavior that considers the effect of anticipated gaze (b), and intended
dwell times (c) of each gaze fixation. We generate convincing coordinated head and eye movements that match collected ground truth
data (d).

Abstract—Human head-eye coordination is a complex behavior, shaped by physiological constraints, psychological context, and
gaze intent. Current context-specific gaze models in both psychology and graphics fail to produce plausible head-eye coordination for
general patterns of human gaze behavior. In this paper, we: 1) propose and validate an experimental protocol to collect head-eye
motion data during sequential look-at tasks in Virtual Reality; 2) identify factors influencing head-eye coordination using this data;
and 3) introduce a head-eye coordinated Inverse Kinematic gaze model Head-EyeK that integrates these insights. Our evaluation of
Head-EyeK is three-fold: we show the impact of algorithmic parameters on gaze behavior; we show a favorable comparison to prior art
both quantitatively against ground-truth data, and qualitatively using a perceptual study; and we show multiple scenarios of complex
gaze behavior credibly animated using Head-EyeK.

Index Terms—Virtual Humans, Computer Graphics Techniques.

1 INTRODUCTION

Our gaze serves as our primary means of interacting with the world
and is a crucial element of communication, relying on the coordinated
efforts of the eyes, head, and body. As such, being able to accurately
model human gaze behavior is a key interest for virtual reality (VR) as
it enables creating realistic and convincing virtual avatars [1], allowing
accurate foveated rendering [2], improving ergonomics [3, 4], and
predicting and enhancing interaction [5, 6]. Although the mechanics of
eye and head movements have been extensively studied in behavioral
psychology [7, 8], modeling the coordination between head and eye
movements remains a less explored area of research. A key question
arises for modeling the eye-head relationship: How much should the
head rotate to accommodate the movement of the eyes?

Many existing models of gaze behavior fail to account for the con-
tinuous and dynamic nature of gaze shifts in real-world settings, where
the gaze constantly shifts between multiple targets. These models often
treat gaze shifts as isolated events originating from a neutral position
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and do not consider that the body treats different gaze shifts differ-
ently [9–13]. Factors such as dwell time—the duration spent fixating
on a target—and the presence of subsequent targets significantly in-
fluence how the head and eyes coordinate during gaze shifts [14]. As
a result, when applied to real-world gaze data, these models tend to
produce unnatural head movements, particularly when simulating se-
quences of gaze shifts, because they neglect past states (e.g., previous
head and gaze positions) and future intentions (e.g., planned gaze shifts
to upcoming targets).

To address these limitations and more accurately model head-eye
coordination behaviors, we introduce Head-EyeK, a novel model that
simulates natural head and eye movements during sequential gaze tasks.
Building on Oommen’s [14] findings that the degree of head rotation
towards a look-at point depends on both the gaze dwell time and the
location of the next target, we designed a VR replica of their experi-
mental setup. We expanded the original experiments to gain further
insight into sequential gaze behaviors, which informed the develop-
ment of Head-EyeK. Our model accounts for additional contexts such
as past head and gaze positions and future gaze intentions, enabling
more realistic simulations of continuous gaze shifts.

Our work validates the findings of [14], confirming that for look-at
points with short dwell times, minimal head rotation occurs, while
longer dwell times result in increased head rotation. We also demon-
strates that the need to attend to a secondary target influences how
much the head turns toward the primary target. These insights were in-
corporated into an algorithm for generating coordinated head-eye gaze
animations, and both quantitative and qualitative evaluations show that
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our approach produces significantly more natural animations compared
to prior works.

Our contributions are as follows:
• Experimental evidence showing that dwell time significantly af-

fects the extent of head movement during sequential gaze tasks,
and anticipation of future gaze targets influences the head’s move-
ment towards the current target.

• The Head-EyeK model, which anticipates head movement based
on consecutive gaze targets and the time spent on each gaze target.

• Results from a comparative study of modeling gaze animations
showing the increased accuracy of Head-EyeK over previous
bio-mechanically-based head-eye coordination methods.

2 NOTATION AND BACKGROUND

Our vision is sharpest in our fovea, a 5◦ visual angle around the center
of our field of view [15]. We thus constantly shift our gaze to bring
different objects of interest into focus, known as foveation. We control
this gaze using both our head and eyes. We express the overall gaze
direction as g = h + e, where g, h, and e are 2D vectors representing
yaw and pitch angles in degrees. While g and h represents gaze and
head in world space, e represents the eye in the local space of the head.
We justify a 2D {hpitch,hyaw} head model by noting that head roll only
marginally affects gaze direction, and that the head physiologically
follows Donder’s law [16], asserting a 1-1 relationship between a
({hpitch,hyaw,hroll}) 3D head and our {hpitch,hyaw} model.

We now delve into the basics of head-eye coordination (readers
familiar with the basic concepts may skip to Section 2.2), followed by
a review and analysis of related work on gaze animation.

2.1 Head-eye Coordination
While previous research [12,17] has recognized the substantial variabil-
ity in gaze-driven head motion, there are well-established patterns of
head-eye contribution to gaze in psychology literature, that can serve
as insights for designing head-eye coordination algorithms.

Ocular Motor Range (OMR) refers to the mechanical limit of eye
rotations (a maximum of 45◦ horizontally and 30◦ vertically) [11]. In
practical scenarios, the eyes seldom reach this limit [10], as the head
turns to prevent eye strain. The head’s mobility is confined by the
Cervical Range of Motion, (a maximum of 90◦ in the yaw axis, 80◦ of
extension (facing up), 50◦ of flexion (facing down) in the pitch axis [18].
The degree of head contribution is determined mainly by the amplitude
of gaze shift, which we will denote as the amplitude effect. For small
gaze shifts (0◦−20◦), predominantly the eyes move. For larger gaze
shifts (20◦− 90◦), both the eye and head move, with the amount of
head movement positively correlated with gaze amplitude [9, 12]. The
head also shows a midline effect, suggesting larger and faster head
movements when the gaze shift moves the head towards the torso
midline [19]. Individual preferences, known as head propensity, also
play a role in head motion [13]: some people are head movers, who
always turn to face gaze targets, while others only turn their heads when
necessary. The dwell time on a gaze target also determines the degree
of head rotation [14], with a greater head turn for a longer intended
dwell. They also found that if we expect to continue a second gaze shift
after an initial gaze shift, the first gaze shift would have a greater head
turn, which we refer to as the expectation effect [14].

A number of factors including image features of visual stimuli affect
reaction time/saccadic latency [20]. Many factors influence the reac-
tion time (saccadic latency) [20] and the delay between head and eye
movements. Typically the head lags behind the eyes slightly [12]. The
head moves first for audio triggered gaze shifts [21], and head and hand
motion onset is synchronized for tasks involving hands [22].

2.2 Related Work on Gaze Control
While substantial research focuses on the psychology and neural mech-
anism of gaze control [7], relatively fewer approaches exist that actually
generate head-eye coordinated motion, addressing limited subsets of
psychological insights (summarized in Table 1). Research focused
on saccadic gaze shifts typically uses a common framework based on

Table 1: Comparison of psychological insights addressed by prior art

Amplitude
Effect

Midline
Effect

Head
Propensity

Dwell
Time

Expectation
Effect

Itti [23] ✓ ✓ × × ×
Eyecatch [24] ✓ × × × ×
Andrist [19] ✓ ✓ ✓ × ×
Pejsa [25] ✓ ✓ ✓ × ×
Jin [26] ✓ × × × ×
Klein [27] × × × × ×
Goude [28] ✓ × × × ×
Proposed ✓ ✓ ✓ ✓ ✓

Motion Summation [19, 23–25, 28–31]. In this framework, the input
is modeled by a gaze sequence {gn, tn}N

n=1 of discrete gaze target po-
sitions gn, and times they are observed tn. The output comprises head
and eye motion trajectories h(t), e(t), such that the combined head-eye
movement meets the input gaze targets at the specified times. The
sparse input representation aligns with the saccade control circuit pro-
posed in psychological literature [32], and makes animator authoring
intuitive [30]. First, a sequence of head-eye configurations that satisfy
the input gaze targets is generated. Subsequently, these head and eye
configurations are interpolated by using a discrete integrator along with
gaze shift velocity and duration parameters, to output head and eye
motion trajectories (see Section 4.1).

The research under this framework primarily differs in their approach
to computing the head and eye configurations that satisfy the input gaze
targets, the velocity profiles used, and duration of each head-eye shift
(see video for visual comparisons).

The head’s contribution to gaze shifts is observably important: the
amplitude effect [9] has been used to compute head contribution [24,
28], where the head only moves towards the gaze target if the angle
between the current head orientation and the target exceeds specific
thresholds (20◦ for [24], 40◦ for [28]). Itti et al. [23] threshold the head
turning towards gaze targets that move the head towards the midline
(midline effect). Previous works [19,25,30] have employed the midline
effect, and further modulated the head contribution by a user-specified
head turning propensity (ranging from minimal head turn needed once
the eye is at its mechanical limit, to maximal head turn towards target).

The head velocity profile and movement duration have a subtle but
noticeable effect on the perceptual quality of the animation. [19,25,30]
use a piece-wise polynomial velocity profile and very short duration
for the head shift. While convincing for a single gaze shift, the motion
is perceptually choppy for a sequence of closely timed gaze shifts. [28]
linearly accelerate/decelerate the head between 0 and 40◦/sec, resulting
in a smooth, yet sluggish appearance for quick gaze shifts. In general,
the quadratic velocity profile used by [23] and the minimal jerk velocity
profile [24] better match our empirical observations.

Gaze shifts exhibit more irregular velocity profiles than head move-
ments [33], with dynamics that vary based on task context—for in-
stance, gaze shifts during hand-eye coordination are faster than those
for visual observation alone [34]. However, given that gaze shifts are
extremely brief (20-40ms), these velocity profile differences become
imperceptible to observers. We therefore adopt a simplified ease-in-
ease-out velocity profile used in existing animation systems [23, 24].

Data-driven methods for head-eye coordination also exist. [27] pro-
pose a recurrent neural network (RNN) to learn head and eye motion
dynamics from an in-house dataset of actors performing smooth pursuit
gaze tasks. While good at reproducing smooth pursuit, saccadic motion
is unresponsively smooth. Data-driven methods have also been used
to generate expressive, emotional, or stylized gaze transitions [35, 36].
Speech driven models for head and eye motion that both, predict gaze
shifts and generate their head and eye motion trajectories [37] [38]
and [26] (LSTM), tend to be context specific to conversational gaze
patterns. In contrast, our approach complements speech-driven mod-
els that decouple conversational gaze sequence prediction, from the
head-eye coordination needed to satisfy the gaze shifts (see Section
5:17-5:44 in video). Finally, our work can also benefit research [39,40]



that produce visual scan paths in images or scenes, but do not generate
head or eye motion trajectories.

None of the existing literature accounts for dwell time and the expec-
tation effect (Table 1), which is not surprising since the examination of
head-eye coordination in psychology literature predominantly centers
on individual gaze shifts [9, 12, 13], that lack quantifiable behavioural
patterns for dwell time and expectation. Inspired by [41, 42] that es-
tablish the validity of studying gaze in VR, we propose a collection
protocol and head-eye coordination model that specifically accounts
for intended dwell time and expectation.

3 VR DATA COLLECTION

Traditionally, gaze stimuli have been presented as arrays of LED lights
arranged in semicircles or hemispheres around subjects, with gaze
tracked using head-mounted pupil and head motion sensors.

Dynamically adjusting the space-time presentation of stimuli based
on the subject’s gaze, is difficult with a physical setup, such as making a
stimulus disappear after an intended dwell time, or presenting expected
stimuli based on stimuli being actively observed.

Findings from [41] demonstrated that gaze shift behavior in VR
reflects that observed in physical environments. VR headsets also
combine 3D sensing and display, enabling the creation of interactive
experiments that dynamically adapt the presentation of gaze targets in
response to the subject’s movements. We thus develop a VR framework
to study dwell time and expectation effect, and gaze scenarios that
contain interactions between dwell time and expected targets.

3.1 Experiment - Dwell Time

[14] show that humans tend to turn their heads towards a gaze target
less if they intend to dwell on the target for a short time, and vice-versa.
However, it was unclear what constitutes a short dwell, and whether
the relationship between dwell time and head turn is continuous (e.g.,
linear) or discrete (short and long). We thus aim to first replicate the
results from [14] to validate our data collection in VR, then exam-
ine the relationship between dwell time and the corresponding head
contribution.

We thus conducted a single-factor experiment where we presented
fixed targets at variable dwell times, and captured the head rotation
amplitude ∆h at the end of each gaze shift. The experimental conditions
chosen based on pilot testing1 were target-angle (20°, -40°, negative
looks left), and dwell-time (0.035, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0,
1.5 seconds).

The angles (20°and 40°) were chosen so that the target would always
be visible in the periphery, enabling the subject to anticipate both the
dwell time and target position. For each combination of target-angle
and dwell-time, we ran 5 repetitions, i.e. 100 (2× 10× 5) trials per
participant. The order of gaze target presentation is randomized during
data collection.

To ensure each trial is independent, we start each trial with an initial
stimulus (1 second dwell time) directly in front of the subject to reset
the head and eyes, and then present the actual stimulus with varying
dwell time (figure 2c). This method is widely used in gaze literature
[14, 41, 43, 44]. We randomized the order of stimuli presentation across
different dwell times and angles to prevent subjects from memorizing
the patterns and adapting their behavior through repetition.

3.1.1 Stimulus Design

Unlike [14], where each gaze stimulus appears for a set time (0.5s for
short dwell and 1.5s for long dwell), real-time gaze tracking allows us
to spatio-temporally adapt the display based on the subject’s gaze.

Figure 2 shows our proposed interaction. Each target (blue) is inac-
tive when it first appears, surrounded by a red circle of variable radius,
where the radius indicates the required dwell time (Figure 2a). When

1We conducted a pilot study (n=6) to tested left-right symmetry by recording
head amplitude for stimuli at six angle pairs (±10° to ±60°). A one-sample
t-test on mean head movement differences showed no significant directional bias
(t(35) = 0.33, p = .747, d = 0.055), justifying our focus on one side per angle.

Fig. 2: Gaze target stimulus behavior: (a) The outer circle size informs
the subject of the required dwell time. (b) Gazing at the target activates
it, causing indicator circle to expand (c) Between each stimulus presen-
tation, a central target resets the subject’s gaze. Distant targets are
indicated by green arrows.

the participant’s gaze intersects the target, it turns green and a green in-
dicator circle expands at constant speed until reaching the red boundary,
at which point the target disappears and the next appears (Figure 2b).
The relative sizes of the red and expanding green circles provide visual
feedback on the remaining dwell time. While the expanding anima-
tion may influence target salience, this effect is consistent across all
experimental conditions and does not confound our results.

In cases where the next target appears outside the subject’s field of
view, such as in Section 3.4, an arrow pointing towards the next target
is displayed in place of the disappearing target (Figure 2c).

3.1.2 Procedure

The experiment commenced with the subject seated in a non-swivel
chair, both arms resting on a table in front of them. Subjects were
instructed to keep their elbows on the table to maintain torso stability
while allowing free movement of the head. The subjects were briefed
on the significance of the red circle’s size as an indicator of the intended
dwell time for each target. Then each subject was directed to put on
the VR headset, and the calibration software was executed to ensure
accurate gaze tracking. The experiment proceeded with the display
of 100 trials consecutively. On average, each subject completed the
procedure in approximately 6 minutes. All experiments took place
at the University of Toronto, approved by the University of Toronto
Research Ethics Board under Protocol 38139.

3.1.3 Results

We conducted this experiment with 16 subjects (10 males, 6 females,
ages 37.3± 17.4). We recorded the presentation time of each gaze
stimulus, as well as the head and eye trajectory at 50Hz to avoid non-
uniform sampling due to potential frame drop. We discretized the head
trajectory into distinct head shifts based on the presentation time of
each stimulus. We then obtained the head rotation amplitude ∆h by
taking the difference in head angle when the stimulus is first presented
and when the stimulus disappears. We collected a total of 800 pairs
of {dwell, ∆h}, in which we observed only 1 gaze-shift towards a
non-target position.

We validated our approach by reproducing the analysis from [14].
We used a two-way TARGET AMPLITUDE × DWELL TIME Repeated
Measures ANOVA (α=.05). We categorized Dwell Time as short
(< 0.5s), or long (≥ 0.5s) to study the effect on head motion towards
gaze targets. We tested the normality assumption with the Shapiro-Wilk



test. Bonferroni-corrected post hoc tests were used when applicable.
The effect sizes are reported as partial eta squared (η2

p).
Both DWELL TIME (F1,14=36.73, p<.001, η2

p=.72) and TARGET

AMPLITUDE (F1,14=34.69, p<.001, η2
p=.71) showed significant main

effects on head rotation. We also found a significant TARGET AMPLI-
TUDE × DWELL TIME interaction (F1,14=6.64, p<.05, η2

p=.32). Post
hoc tests (Table 2) showed that DWELL TIME has a significant effect
on head movement at both TARGET AMPLITUDES (both p < .001).
Similarly, TARGET AMPLITUDE also had a significant effect in both
DWELL TIMES (both p < .001).

Table 2: Impact of long and short dwell time at different target amplitudes.

target angle short dwell θhead long dwell θhead
20° 5.8 ± 5.7 10.6 ± 6.5
40° 20.7 ± 9.4 26.5 ± 10.1

Fig. 3: Two examples of subject head rotation corresponding to stimulus
dwell time. The columns represents the head contribution towards the
40°(orange) and 20°(blue) gaze target.

Figure 3 shows two examples of subject head rotation plotted against
the dwell time of each stimulus. We see a consistent rise in head
contribution with increasing dwell time until it reaches 0.3/0.4s, beyond
which the head contribution stabilizes. This reflects the need for our
head IK system to employ a continuous parameter reflecting dwell
time’s impact on head contribution, but with a saturation when dwell
time exceeds 0.3/0.4s. Based on these observations and our results, we
can confirm that dwell time has a significant impact on the amount of
head rotation. For subsequent experiments, we consider a dwell time
less than 0.3s as an unambiguous short dwell and a dwell time greater
than 0.5s as a long dwell.

3.2 Experiment - Expectation Effect
[14] showed that when a subject expects to make two gaze shifts in the
same direction, the head movement for the initial gaze shift will have a
larger amplitude than usual. One can observe a smaller amplitude when
the gaze shifts in the opposite direction, like when watching tennis (see
00:38-00:43 in video). We thus generalize our study to analyze the
effect of subsequent gaze targets in the same (onward condition) or
opposite (tennis condition) direction of motion, on the initial head turn.

In the onward condition, we replicated the experimental setup used
in the dwell time experiment. Each trial comprised three stimuli (Figure
4a): first, a head-eye reset target with a 1s dwell; second, a shorter 0.1s
or 0.5s appeared, accompanied by a hint indicating the position for a
subsequent target; third, the secondary target, with a 1.5s dwell appear-
ing in place of the hint. The trial concluded once the subject attended
to all three targets. We experimented with varying combinations of
primary (20°, -40°) and secondary (none, 10°, 20°, 30°, 40° beyond
the primary) target angles. The primary target was presented with both
short (0.1s) and long (0.5s) dwell time. Each combination was repeated
5 times, i.e. a total of 100 trials (2×5×2×5), presented in randomized
order.

In the tennis condition, stimuli are presented as an alternating se-
quence across the torso mid-line of (Figure 4b). Each trial comprises
11 stimuli: the initial reset stimulus followed by 5 repetitions of targets
that alternate left and right at fixed angles and dwell time. We use the

Fig. 4: Expectation effect trial showing onward (a) and tennis (b) condi-
tion.

following combinations of target angle (20°, 40°) and dwell time (0.1
for short dwell and 0.5 for long dwell).

Procedure Similar to the dwell time experiment, subjects are
instructed to avoid moving their torso but may move their head freely.
In both onward and tennis condition testing, subjects can take a break
if needed, and are informed of the stimuli pattern to aid anticipatory
behavior. Data collection takes approximately 10 minutes.

Results We conducted the onward and tennis experiment on 13
subjects who were also part of the dwell time experiment (8 males,
5 females, ages 33.0± 13.1). For the onward condition, we first at-
tempted to replicate the result from [14]. We analyzed ∆h (obtained as
in Section 3.1) using a TARGET AMPLITUDE × DWELL TIME × SEC-
ONDARY three-way repeated measures ANOVA using the same analysis
methodology as in Section 3.1.3. The results can be found in Table 3.
The analysis showed significant main effects for all of TARGET AMPLI-
TUDE (F1,12=72.06, p<.001, η2

p=.86), DWELL TIME (F1,12=143.72,
p<.001, η2

p=.97), and SECONDARY (F1,12=13.95, p<.05, η2
p=.52).

The results confirm the impact of the secondary target on head rotation
at both short and long dwell times for the primary target at various
angles, as predicted by [14].

Table 3: Result of the onward condition study, showing average head
rotation for attending to different gaze TARGET AMPLITUDE (20◦ vs 40◦),
considering the presence of SECONDARY targets (with vs without onward)
and intended DWELL TIME (long vs short).

target dwell θhead without onward θhead with onward
20° Short 3.6±3.7 6.1±4.2
40° Short 16.3±5.9 19.8±6.9
20° Long 9.9±6.2 14.2±3.9
40° Long 26.3±8.7 32.7±6.1

Furthermore, these results further validated our experimental ap-
proach and emphasized the need to account for anticipated gaze targets,
in computing head rotation for gaze control. Note that we found no
meaningful Pearson correlation between the amplitude of the secondary
gaze shift and head turn for the primary gaze target (weak linear corre-
lation for long dwell and none for short dwell time).

We also qualitatively observed that subjects tend to merge two head
shifts into one, when the primary and secondary targets are near each
other. The head angle trajectories in Figure 5 for example, show only
one stable head angle for a 10°onward shift (left), instead of two stable
head angles for a 40°onward shift (right). This suggests that multiple
anticipated and proximal gaze targets can be captured by a single head
shift when computing head rotation for gaze control.

For the tennis conditions, we conducted a three-way repeated mea-
sures ANOVA with TARGET AMPLITUDE, DWELL TIME, and SEC-
ONDARY as factors, consistent with the analysis used for the onward
condition. The results did not show significant interactions. How-
ever, we found significant TARGET AMPLITUDE (F1,7=29.98, p<.001,



Fig. 5: Head angle trajectories for two different onward condition sec-
ondary target angles (5 repetitions, long dwell, same subject).

Table 4: Result of the tennis condition study, showing average head
rotation for attending to different gaze TARGET AMPLITUDE (20◦ vs 40◦),
considering the presence of SECONDARY targets (with vs without tennis
condition) and intended DWELL TIME (long vs short).

target dwell θhead without tennis θhead with tennis
20° Short 6.1±6.9 9.4±5.4
40° Short 21.9±9.9 21.1±8.5
20° Long 10.2±6.8 13.9±5.4
40° Long 25.9±9.8 25.1±9.6

η2
p=.81), and DWELL TIME (F1,7=11.82, p<.05, η2

p=.63) main ef-
fects, confirming that intended dwell time remains a significant factor
in successive sequential gaze shifts. This effect was not demonstrated
in [14], which focused exclusively on single-instance gaze shifts. How-
ever, the presence of SECONDARY targets in the opposite direction
did not have a significant effect on the degree of head involvement
(F1,7=1.02, p>.05, η2

p=13).

3.3 Key Insights
Expanding on the findings of [14], we discovered a continuous positive
correlation between intended dwell time and head contribution to gaze
(plateauing for dwell times > 0.4s). Our onward expectation effect ex-
periment confirmed energy-conserving head-turn behavior, accounting
for anticipated gaze targets. Multiple proximal gaze sequence targets
were also satisfied using a single head movement. Our experiment
under tennis conditions reinforced that the dwell time effect extends
to successive gaze shifts. These insights are critical to the design of
our Head-EyeK algorithm in Section 4, which can determine the head
trajectory when attending to a gaze sequence of arbitrary number of
gaze targets.

3.4 Additional Data Collection
While the dwell time and expectation effect experiments allow us to
investigate gaze parameters in a controlled fashion, they do not reflect
the spontaneous nature of gaze behavior in the wild. To evaluate
Head-EyeK, we collected additional motion data within the proposed
experimental setup, as well as in augmented reality (AR) and VR
gaming sessions, to better capture head-eye coordination behavior
in less controlled scenarios. Note that while existing datasets [45]
capture head-eye coordination behavior, we opted to create our own
dataset because [45] allows free torso movement, which affects head-
eye coordination patterns [41]. In the proposed experimental setup,
we recorded challenging gaze behaviors, such as the "double take",
where the subject first takes a short glance at a target, looks away, then
quickly looks back at the target for a second and longer time. We also
recorded randomly presented gaze target sequences incorporating 20
randomly ordered instances of isolated gaze shifts, double takes, tennis
conditions, and onward conditions.

In AR, we collected head and gaze data from seated users wearing a
VR headset in pass-through mode while performing a physical block-
stacking task. The participants reconstructed designs illustrated in
two reference images (Figure 6 middle). Lastly, we recorded seated

users playing a VR wack-a-mole game, where users smack moles that
randomly appeared in a semi-circle in front of them (Figure 6 right).

We collected data from 16 consenting individuals (10 males, 6 fe-
males, ages 37.3±17.4), comprising a total of 88 minutes of head-eye
coordination, used for evaluation in section 5.

Fig. 6: Additional data collection: controlled gaze target sequences (left)
physical block stacking (middle), virtual wack-a-mole game (right).

3.5 Implementation Details

All experiments were conducted on a Meta Quest Pro (a commercial
VR headset with head and eye tracking ability) [46]. The headset
display provides a 106°(horizontal) by 95°(vertical) field of view, with
a refresh rate of 72-90 Hz. Although the field of view (FOV) meets
the mechanical limit, the peripheral vision may remain incomplete
at the extreme eye ranges. The headset uses 5 infrared cameras for
pupil tracking, capable of capturing gaze shifts of up to 60°at up to
90Hz, with a tracking error of 0.85°during head-free gaze shifts [46].
The device combines internal accelerometers with external cameras, to
track the head with an average error of 0.48°at up to 90Hz [47]. Our
experimental framework, to be publicly released, was developed in
Unity.

4 HEAD-EYEK ALGORITHM

We take in a sequence of gaze targets and look-at times {gn, tn}N
n=1,

compute head and eye shifts, then sum up all the motions using an
integrator to output head and eye trajectories h(t),e(t). The motion
summation formulation for head trajectory is:

ḣ(t) =
N

∑
n=1

ḣi(t) =
N

∑
n=1

bi · v
(

t0
i , t f

i , t
)

(1)

where each head/eye shift is characterized by: 1) a direction vector b
that determines the direction and magnitude of head/eye shift, 2) the
start and end time of the motion t0

i and t f
i , and 3) a velocity profile

v(t0, t f , t) which specifies the displacement at each time step t during
the motion.

Note, we generate gaze trajectory g(t) similar to [24], then obtain
e(t) = g(t)−h(t), as it eliminates the need to account for the Vestibular
Ocular Reflex (VOR), and is aligned with gaze being explicitly modeled
by neural circuits [48].

Algorithm 1 outlines the overall framework for computing head and
eye trajectories. The components of each head shift are computed as
follows:

Motion direction vector (bn) The motion direction defines the
direction and amplitude the gaze/head has to travel during each gaze
shift. For gaze, we take it as the difference between the previous gaze
target and the current target bn,gaze = gn−gn−1. For head angle, we first
compute head gaze targets {hn, tn}N

n=1 based on minimizing head-eye
coordination energy detailed in 4.3, then each head shift direction can
be computed similarly as gaze shift directions with bn,head = hn−hn−1.



ALGORITHM 1: Generate Gaze Trajectories

Input: Gaze sequence {gn, tn}N
n=1

Output: Gaze trajectory ġ(t), Head trajectory ḣ(t)
Procedure

Generate head sequence {hn, tn}N
n=1 as per Section 4.3;

Initialize gaze movement set G= { /0};
Initialize head movement set H= { /0};
for n = 1 to N do

generate gaze shift: bn,gaze, t0
n,gaze, t f

n,gaze;

generate head shift: bn,head , t0
n,head , t f

n,head ;
end
ġ(t) = ∑

N
n=1 bn,gaze · v(t0

n,gaze, t f
n,gaze, t);

ḣ(t) = ∑
N
n=1 bn,head · v(t0

n,head , t f
n,head , t);

Start time (t0) The start time of each gaze shift are defined by
the input gaze target sequence, t0

n,gaze = tn. For the start time of each
head shift, we take t0

n,head = t0
n,gaze + delay, reflecting the common

observation that the head movement often follows the eye [25]. We set
the head delay to have a default value of 100ms.

End time (t f ) The end time of the movement is computed with
t f = t0 + duration. The movement duration for both gaze and head
shifts follows well-studied relationships. The duration of the gaze
movement is found to be linearly correlated to the amplitude of the
gaze shift [49] (the units are milliseconds and degrees):

Gaze duration = 20+∥b∥2 ×1.33 (2)

A similar relation is observed for head shifts, where the peak velocity
is linearly correlated to the head shift amplitude [50], which suggests
head shifts have a constant duration. We have therefore chosen the
value of 400ms, the same as [24], as we have empirically found it to
generate the most realistic head motion.

Velocity Profile (v(t0, t f , t)) chose to use a minimal jerk velocity
profile, as it reflects the ease-in ease-out behaviour of natural movement,
and it has been empirically shown to reflect natural human motion
in [24].

v =
30

(t f − t0)
5 · (t − t0)

2 · (t − t f )
2

(3)

The last step of algorithm 1 generates ġ(t) and ḣ(t). These are
converted into trajectory g(t) and h(t) by summing/integrating these
discrete velocities. In the next section, we discuss how our energy
minimization approach generates {hn, tn}N

n=1.

4.1 Optimization-based Head-Eye Coordination
Our experiments provide various insights about head-eye coordination
during a sequence of gaze shifts. However, while our data collec-
tion is diverse, it still represents a subset of gaze behavior. Head-eye
coordination in gaze involves various cognitive, conversational, and
cultural—factors beyond the insights presented in Section 3. Our algo-
rithm is thus designed to provide a procedural structure within which
the insights from Section 3 and other factors can be cast as energy terms
and optimized.

From the insights obtained from our experiments, we’ve identified
two forms of energy that are minimized during head movements, which
we label as eye strain energy and locomotion energy. In this section,
we first discuss how we formulate an energy minimization problem
based on these opposing energies, then present our proposed algorithm
to solve it and generate {hn, tn}N

n=1.

eye strain energy Previous works have shown that in head-free
gaze shifts, the head always moves such that the eye configuration
would not have to be near the Ocular Motor limit [9]. This aligns with
our intuition that maintaining our eyes in a rotated position can be

straining. Hence, the natural inclination to turn our heads towards a
gaze target can be seen as a mechanism to reduce the energy associated
with eye strain.

locomotion energy Inherently, head movements tend to display a
sense of economy; unnecessary movements are typically avoided. In
shorter dwell times (spanning from 0.1 to 0.4s as in Section 3), the head
tends to exhibit minimal movement towards the gaze target, favouring
the continuity of the original path or progressing towards the next
anticipated target. Conversely, with longer dwell times (0.5s or more),
the emphasis on minimizing locomotion becomes less pronounced.
Instead, the head would turn towards the gaze target to alleviate eye
strain.

Inspired by the observations of these two opposing energies, we
have formulated the selection of head angles as an optimization task to
minimize the following energy:

{hn}N
n=1 = argmin

{hn}N
n=1

N

∑
n=1

Etarget(hn)+Etransition(hn,hn+1) (4)

The energy encapsulates two components: the goal of focusing on the
gaze target Etarget and managing transitions between different neck
configurations Etransition. Both components address one or both of the
proposed energies. The target energy is defined as:

Etarget(hn) =(1−w(tn, dwell))∥hn −gn∥2

+w(tn, dwell)∥hn −h∗
n∥

2 + kcentre · ∥hn∥2
(5)

This component has three terms respectively. The first of which is the
distance between the head direction hn and gaze direction gn. Directly
minimizing this term would completely turn the head to the gaze target,
relieving any eye strains. The second term computes the distance be-
tween the head direction hn to a "lazy" head direction h∗

n, which is a
smoothed version of the gaze-targets (computed by iterative Laplacian
smoothing on the gaze-targets, shown in Figure 7). h∗

n captures an effi-
cient head trajectory that minimizes movement by accounting for both
preceding and subsequent gaze targets. Directly minimizing this term
would result in a lazy movement of the head that turns towards each
target minimally. The first and second terms are weighed by dynamic
weighting factors conditioned on dwell time defined as follows:

w(tdwell) = exp(−kdwell · tdwell) (6)

w(tdwell) amplifies the importance of conserving locomotion energy
when the dwell time is short and emphasizes preventing eye strain when
the dwell time is long. The constant kdwell regulates the impact of dwell
time, we set it at a default value of 0.4 after conducting a line search to
align with the observed effects in the dwell time condition experiment.
The last term is the magnitude of hn, which reflects the center bias
observed in head shifts [9].

Fig. 7: Comparing head angles when turned towards the "lazy" head
direction h∗

n vs fully turning to the gaze target gn

The transition energy is defined as follows:

Etransition(hn, hn−1) = ktransition ·w(tn, dwell)∥hn, hn−1∥2 (7)



This term gauges the distance necessary to transition between previ-
ous and current head angles, approximating the required locomotion
effort. Similar to Etarget , the impact of this term varies with dwell
time, being more influential when dwell time is shorter to represent the
reduced head locomotion observed in the dwell time experiment. We
additionally weigh this term with a customizable constant ktransition,
which we set with a default value of 0.6, obtained through a grid search
to minimize the mean square error to the trajectories captured in section
3.4.

We solve the optimization problem by building graphs that represent
the proposed energy and solve for the shortest path. We start with
the construction of the graphs. Our approach involves two separate
graphs—one for yaw (left-right) and another for pitch (up-down) head
rotations. Despite their distinct dimensions, both graphs share parallel
principles and structures. For simplicity, we’ll focus our discussion on
one graph, as both follow the same processes.

The nodes of these graphs are labelled with the convention (frame,
angle), summing up to a total of 90 ∗N + 2 nodes as shown in Fig-
ure 8, where N is the total number of gaze targets to attend to. Each
node represents a potential head angle at a certain frame. The angles
cover the discretized range of head motion, spanning from -90 to 90
degrees, divided into 2-degree intervals, while the frames range from 1
to N, corresponding to the number of gaze targets in the input gaze se-
quence. Nodes of consecutive frames are connected via directed edges.

Fig. 8: Graph construction for the proposed method showing node and
edge value for nodes (n-1, 90), (n, 88) and (n+1, 88) (left), graph con-
struction for the real-time version of the proposed method, taking K next
targets as input, with K ∈ {1,2,3...}(right)

The edges encapsulate the transition energy Etransition between the two
nodes it connects. The nodes themselves are annotated with the target
energy Etarget . Lastly, we add a source node (connected to all nodes in
layer 1 with an edge weight of 0), and a sink node (connected to layer
N). To solve the optimization problem, we find the shortest path from
the source to the sink node. In our implementation, we solve the short-
est path between the source and sink node using Dijksra’s algorithm.
Dijksra has a complexity of O((V +E) logV ), in our case, it scales
with the number of gaze targets N with the relationship O(N logN),
which is tractable even for large number of gaze targets. The resultant
path would then be the head target sequence {hn, tn}N

n=1. Note that
since the source and sink are connected to the rest of the graph with
zero-weight edges, they do not influence the overall path.

4.2 Real-time Application
While our algorithm is designed for offline animation, we also proposed
a windowed approach for more real-time applications. In the real-
time version, instead of constructing a graph based on the entire gaze
sequence {gn, tn}N

n=1, at each time step n, we construct a sub-graph
using only the next K gaze targets, {gn, tn}n+K

n . Different from the
full method, instead of having an arbitrary source node, the windowed
approach fixes the source node to be the result from the previous
window to ensure the motion is continuous. The node is connected
to the first of the graph with edges with value Etransition like all other
nodes. We evaluated the windowing approach against the full approach
by comparing the Mean Square Error (MSE) with the ground truth head
angle contribution. We found that when only a few look-at-targets are
considered, the windowed approach is a crude approximation of the full
algorithm. However, with K >= 3, the windowed approach reaches a

similar performance as the full method. This shows that the anticipation
of future targets has a sizeable effect on the head contribution of each
gaze shift.

Fig. 9: Comparing ground truth MSE between the windowed approach
with the full method on an example gaze sequence

4.3 Smooth Pursuit
Smooth pursuit is a class of actions that describe eye and head motion
when continuously tracking a moving target. While our model is not
designed for smooth pursuit, many tasks that involve pursuit also con-
tain saccadic movements when switching between pursuit targets, such
as looking at different targets during juggling, or switching between
rows of text when reading a book.

Instead of a sequence of discrete targets {gn, tn}N
n=1, to represent

moving targets to track, we take two streams of inputs, an object list
{gm(t)}M

m=1, which describes the trajectory gm(t) of all M objects
in the scene, and a pointer list P(t), which determines which of the
M objects to track at each time. The sequence gP(t)(t) would then
represent the instantaneous look-at-point. A change in the value of
P(t) would indicate that a saccade has occurred, shifting the attention
from tracking one object to another. Such a gaze trajectory would
alternate between saccadic shifts between different targets, and smooth
tracking when there is no target change. Our head-eye optimization
model can generate a more realistic head contribution for these saccadic
movements between targets.

To compute the optimized head-path for the saccades in this se-
quence, we consider a sequence of smooth pursuit targets of start
position, end position, start and end time {g0

n,g1
n, t

0
n , t

1
n}N

n=1, and con-
struct a graph as shown in Figure 8 but with 2N +2 nodes since there
are now both the start and end targets. For each nodes corresponding
to the end angle, we give it the dwell time of t1

n − t0
n , as we expect the

smooth pursuit to allow the head to catch up to the target, and for the
nodes corresponding to the start angle, we consider it having a dwell
time of 0, since a combination of saccade and smooth pursuit will be
used to reach the gaze target. After solving for the shortest path, the
optimized head angles for each saccade would then be the {g0∗

n }N
n=1

We integrate smooth pursuit into the saccadic model by modify-
ing algorithm 1. At each timestamp, we specify a additional small
displacement towards the gaze target,

ḣpursuit(t) = dt · (gP(t)−h(t)) (8)

Where ḣpursuit(t) is the instantaneous velocity of the head and h(t) is
the current head position. To ensure smooth movement, we cap the
pursuit velocity at capped at 20◦/sec for head movement and 100◦/sec
for eye displacement.

5 EVALUATION

Our evaluation is threefold: we show Head-EyeK applied to a sequence
of gaze targets defined for reading, juggling and conversation; we then
implement and compare 7 state-of-the-art models against ours relative
to the 88 minutes of head-eye data collected in Section 3; and we
perform a perceptual study to compare Head-EyeK against prior art on
4 gaze tasks.

5.1 Gaze Animation Applications
We choose two complex gaze animation tasks of reading and juggling
to showcase Head-EyeK’s ability to optimize for both discrete gaze
shifts and smooth pursuit. For reading, we procedurally generate an



input gaze sequence that has segments of smooth pursuit (left to right),
and gaze shifts (right to left and down) interleaved (video 4:46-4:53).
For juggling, we use balls trajectories tracked from a juggling video
(video 4:41-4:46) [51], and an input gaze sequence where gaze shifts
to a ball just prior to its apex and smoothly pursues it until a gaze shift
to the next ball (as described by jugglers).

Head-eye coordination is also important for expressive conversa-
tional gaze. Head-EyeK integrates seamlessly to control the head and
eyes of an audio-driven animation system that generates a sparse input
sequence of conversational gaze shifts [38] (video 5:16-5:40).

5.2 Prior Art Implementations
For comparison, we have implemented various prior art approaches in
Python (available in the supplementary repository). All the procedural
models including [29] [19] [23] [24] [19] [25] [28] have been imple-
mented either exactly as specified in the original papers or modified
from the provided code. On the other hand, [26] includes a learned
prior of head-gaze coordination trained on a 1.4-hour dataset that is no
longer available. We therefore trained it based on the 2.25-hour "Gaze
in the Wild" dataset [45].

The procedural models expect inputs in the form of a gaze sequence
{gn, tn}N

n=1, which specifies the sequence of gaze targets and the cor-
responding time each gaze targets are attended to. We obtained these
from our collected gaze trajectory g(t) using the dispersion filter tech-
nique with a dispersion threshold of 3◦ and duration threshold of 0.1
seconds [52], a common method of obtaining intervals of fixation from
continuous gaze data. The method involves sliding a window through
the trajectory, and calculating dispersion within the window. When the
dispersion exceeds the set threshold, it marks the end of a potential fixa-
tion. If the duration criteria are met within the window, it identifies the
points as fixations and records the centroids gn and start times tn of that
fixation. The dispersion of a gaze sequence g(t1, ...tM) = {xi,yi}M

i=1 is
defined as: D = max(xi)−min(xi)+max(yi)−min(yi).
As [26] expect a smooth input gaze trajectory, the gaze data used as
is. Both [19] and [25] incorporate an extra scalar parameter, head
propensity, to regulate head contribution. To ensure a fair comparison,
we found an optimal propensity value by performing a line search to
minimize the RMS error across all collected clips. All models are
evaluated using the collected gaze trajectory as outlined in Section 3.4,
re-sampled to 30 fps. We will compare trajectories for the double-take
condition, random condition, wack-a-mole and see-through tasks.

5.3 Quantitative Results
The generated head trajectories are compared quantitatively against
ground truth using the average RMSE per frame, shown in Table 5.

Table 5: Average RMSE Comparison with other Baselines

Methods double
look

random wack-a
-mole

see
through

Eyecatch [24] 12.10 21.36 46.60 26.10
Goude [28] 21.71 28.63 54.20 24.11
Jin [26] 15.80 29.08 49.90 24.24
Pejsa [25] 9.37 20.09 39.09 24.46
Andrist [19] 9.75 22.66 55.04 25.70
Itti [53] 9.95 20.09 39.19 24.65
Proposed Head-EyeK 8.54 9.47 21.28 13.07

Head-EyeK consistently achieves the lowest error across all condi-
tions compared to prior models. The outcome is unsurprising given that
we are unique in considering gaze dwell time and anticipated targets.
Models like Eyecatch [24] and Goude [28] trigger head shifts solely
based on a gaze shift amplitude threshold without considering relative
positions to the previous or future gaze targets. Consequently, when
dealing with sequences of small saccades like those in our collected
data, these models struggle to generate relevant head rotations. Jin [26]
also achieves a high error as the approach generates motion in a Markov
fashion, only considering the previous frame of gaze position. This
approach generates smooth head motion when given smoothly varying

Fig. 10: Head yaw angle for Eyecatch [24], Pejsa [25], Itti [23], and Head-
EyeK in the double-take condition. The blue represents the predicted
head trajectory, while the green represents ground truth. The figure
highlights the lack of head movements in Eyecatch [24], the jittery head
movements in Pejsa [30], the exaggerated large movements in Itti [53],
and the more reasonable predictions made by Head-EyeK.

gaze trajectories and performs poorly when given gaze trajectories dom-
inated by saccades. The remaining models display relatively reasonable
errors across all conditions.

Table 6: Average RMSE Comparison with Ablated Version of Head-EyeK

Methods double
look

random wack-a
-mole

see
through

ktransition = 0 9.30 10.00 21.49 14.98
w(tn,dwell) = 0 9.31 10.00 21.53 14.18
kcenter = 0 9.88 10.30 21.41 15.73
Proposed Head-EyeK 8.54 9.47 21.28 13.07

We also conducted an ablation study to evaluate the contribution
of each component in our optimization energy function by setting dif-
ferent optimization weights to zero, as shown in Table 6. The results
demonstrate that each term contributes to improved head-turn predic-
tion accuracy, validating our design choices. Additionally, since all
ablated models maintain reasonable performance, this indicates that
our approach is robust to hyperparameter variations, allowing artists to
adjust the model parameters without generating infeasible motion.

5.4 Perceptual Study
We animated four challenging gaze behaviors: the double-take and
tennis condition (Section 3.3), as well as reading and juggling (Section
5.1) using Head-EyeK and prior art (Table 1). To validate the impor-
tance of combining smooth pursuit and discrete gaze shifts, we added a
smooth pursuit only animation for the juggling and reading tasks.

We then conducted a perceptual study to rank these animations in
their ability to capture the behavior shown in reference videos (see
supplemental study videos). We found by pilot testing that a max of
4 animations could be viewed simultaneously and effectively ranked
after viewing them freely multiple times. We thus split the 7 (or 8)
animations arbitrarily into two sets, both of which included Head-EyeK.

Viewers were thus shown 8 randomized videos (2 split * 4 gaze
tasks). We collected responses from 25 viewers (university students)
recruited remotely, for the 15-minute study deployed via a web browser.
Table7 shows that Head-EyeK was ranked first or second for all trials,
and in particular was an improvement over using smooth pursuit only
for juggling and reading. We attribute second rank on double-takes to
our reference video being more exaggerated in motion than our input
gaze targets, encouraging viewers to prefer the exaggerated and jittery
head movements demonstrated by Itti et al. [53], and Jin et al. [26].

We further evaluated a ranking of Head-EyeK and prior approaches
using the Plackett-Luce model [54], which estimates the relative
"worth" of each method (Table 8). Overall, Head-EyeK scored 4 times
better than the next best approach.

To gain a better understanding of why Head-EyeK outperforms prior
methods, we present the motion curves of the top four approaches from
the user study in Figure 10. As seen, the proposed approach generates
a trajectory that is much more closely aligned with the ground truth,
resulting in significantly more natural motions.



Table 7: Result for preference study (N=25), showing the overall rank of
each method, with rank 1 = most preferred and rank 4 = least preferred.

examples ranked 1 ranked 2 ranked 3 ranked 4
double take Jin Head-EyeK Goude Andrist
double take Itti Head-EyeK Yeo Pejsa
juggling Head-EyeK pursuit only Pejsa Andrist
juggling Head-EyeK Goude Itti Yeo
reading Head-EyeK pursuit only Yeo Pejsa
reading Head-EyeK Itti Jin Goude
tennis Head-EyeK Pejsa Yeo Itti
tennis Head-EyeK Andrist Goude Jin

Table 8: Computed worth, z-values, and p-values for different approaches
using the Plackett-Luce model. The z-values represent the standardized
differences concerning the proposed method.

Method Worth Z-Value P-Value
Head-EyeK 0.4290 – –
Eyecatch [24] 0.1022 11.09 <0.01
Itti [23] 0.1377 9.88 <0.01
Pejsa [30] 0.1066 10.94 <0.01
Andrist [55] 0.0709 12.15 <0.01
Goude [28] 0.0795 11.86 <0.01
Jin [26] 0.0741 12.04 <0.01

5.5 Discussion

Summary of contribution: In this paper, we introduced Head-
EyeK, a bio-mechanically inspired head-eye coordination model that
leverages dwell time and the anticipation of future gaze points to gen-
erate accurate head movements during gaze shifts and smooth pursuit
across various scenarios. We conducted behavioral psychology ex-
periments, which demonstrated that both dwell time and future gaze
anticipation significantly influence head movement. These findings
informed the design of Head-EyeK. Our validation is twofold. First,
our model quantitatively outperforms prior works when compared with
ground truth. Second, an extensive user study showed that Head-EyeK
generates more natural motion compared to previous approaches.

Number of Look-Ahead Targets: In Section 4.2, we experi-
mented with varying the number of look-ahead targets to examine its
impact on predicted head rotation and whether it influences the mean
square error relative to the ground truth, aiming to balance runtime and
accuracy. Our findings show that by simply considering two future
targets, rather than only the immediate next gaze target, we achieved the
most significant performance improvement, with further increases in
window size yielding only incremental gains. This underscores the im-
portance of accounting for anticipation in gaze modelling. Additionally,
we observed that accounting for three look-ahead targets allowed us to
predict head contributions to gaze shifts almost as accurately as when
considering all future targets. This result offers potential insights into
the neural pathways underlying head-eye coordination, which could be
explored in future research.

Focus on Head-Gaze: Accurately predicting head movements
based on gaze behavior holds significant potential for improving head-
mounted display (HMD) rendering techniques. Similar to foveated
rendering, where computational resources are concentrated on the part
of the scene the user’s gaze is focused on, head-gaze prediction could
enable systems to anticipate where a user’s head will turn next. By pre-
rendering or prioritizing the rendering of areas in the user’s peripheral
vision that are likely to become the focus, significant computational
resources could be saved. This approach would not only reduce the
overall computational load but could also enable more efficient, real-
time rendering in resource-intensive virtual environments.

Convincing Virtual Characters: Creating realistic and convinc-
ing virtual humans requires solutions spanning multiple disciplines,

including graphics, animation, and behavioral psychology. While re-
cent advancements in both software and hardware have significantly
improved rendering quality, the increased realism often exposes subtle
deficiencies in motion dynamics, particularly in eye and head move-
ments [56]. As the demand for photo-realistic characters rises, it be-
comes critical to address these motion inconsistencies to avoid the
uncanny valley effect, where characters appear unsettling due to unnat-
ural movements. By providing a system capable of generating dynamic
and natural head-eye coordination, we aim to bridge this gap, enhancing
the believability of virtual humans. Our approach helps ensure that
motion quality keeps pace with rendering advancements, leading to
more lifelike and engaging virtual characters.

Further Applications: Although our evaluation of Head-EyeK fo-
cuses on generating believable avatar behavior, the ability to accurately
predict head orientation has significant implications for ergonomics in
head-mounted displays. For instance, VR applications with extended
screen time, such as virtual workspaces and classrooms, can lever-
age Head-EyeK’s predictive capabilities to predict head angles based
on the user interface (UI) layouts, enabling designers to optimize UI
layouts for reducing head strain and enhancing user comfort. Addi-
tionally, the adjustable parameters of Head-EyeK—kdwell , kcenter, and
ktransition—can be tailored to individual users, generating personalized
head motion profiles, which can be used to dynamically adapt UI lay-
outs across various applications, further improving ergonomic design
and reducing discomfort during prolonged use.

VR-based Gaze Experiment: Traditionally, studying gaze behav-
ior requires the construction of physical light arrays to present stimuli
to subjects [13–15], which can be both tedious and costly to set up. By
replicating existing experiments within our VR setup [14], our findings
align with prior work [41] and support the validity of using VR as an
effective, low-cost alternative to traditional physical setups for studying
gaze behavior. With pass-through mode and the potential of using game
engine to render realistic virtual environments, the VR medium may
also enable studies of in-the-wild behavior of head-eye coordination,
which can be explored in future work.

Limitations: While our model generates more accurate head move-
ments compared to previous approaches, it still has several limitations.
Firstly, our behavioral studies focus on gaze shifts in the horizontal
direction (Sections 3.1 and 3.2), which may limit the generalizability
of our findings. Secondly, the head contribution in our model depends
on three parameters: kdwell , kcenter, and ktransition. Although having
multiple parameters enhances expressiveness, adjusting these variables
might present challenges for animators, especially when compared to
simpler models like [19, 25], which utilize a single "head propensity"
parameter for behavior tuning. Lastly, the performance of our model
is highly dependent on the quality of the input gaze sequence. If the
target gaze sequence is unrealistic or unachievable, the resulting head
movements may appear unnatural or undesirable. Lastly, our model
is grounded in ergonomic and psychological principles, focusing on
natural efficiency. It does not account for more stylized head-gaze
behaviors, such as exaggerated side-eye glances, dismissive looks, or
eye rolls [35], which are often used to convey specific emotional or
stylistic cues. Incorporating such behaviors would require additional
layers of customization for expressive purposes.

6 CONCLUSION

In conclusion, we present a new framework for studying human gaze
behavior in VR. We illustrate the framework with studies on intended
dwell time and gaze target expectation, that validate prior findings,
and produce new insights, revealing that head motion planning aligns
with principles of energy conservation. We use our findings to formu-
late a novel Head-EyeK algorithm, that we comprehensively evaluate
and show to perform better than prior art. Head-eye coordination for
gaze animation is a fundamental aspect of facial animation and digi-
tal character behaviour, and we hope our open source framework and
implementations of various algorithms will provide a foundation for
future work on gaze control and animation.
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